Myeloperoxidase Levels and Its Product 3-Chlorotyrosine Predict Chronic Kidney Disease Severity and Associated Coronary Artery Disease.

Publication Type:

Journal Article

Source:

Am J Nephrol, Volume 46, Issue 1, p.73-81 (2017)

Abstract:

<p><b>BACKGROUND: </b>The role of myeloperoxidase in chronic kidney disease (CKD) and its association with coronary artery disease (CAD) is controversial. In this study, we compared myeloperoxidase and protein-bound 3-chlorotyrosine (ClY) levels in subjects with varying degrees of CKD and tested their associations with CAD.</p><p><b>METHODS: </b>From Clinical Phenotyping Resource and Biobank Core, 111 patients were selected from CKD stages 1 to 5. Plasma myeloperoxidase level was measured using enzyme-linked-immunosorbent assay. Plasma protein-bound 3-ClY, a specific product of hypochlorous acid generated by myeloperoxidase was measured by liquid chromatography mass spectrometry.</p><p><b>RESULTS: </b>We selected 29, 20, 24, 22, and 16 patients from stages 1 to 5 CKD, respectively. In a sex-adjusted general linear model, mean ± SD of myeloperoxidase levels decreased from 18.1 ± 12.3 pmol in stage 1 to 10.9 ± 4.7 pmol in stage 5 (p = 0.011). In patients with and without CAD, the levels were 19.1 ± 10.1 and 14.8 ± 8.7 pmol (p = 0.036). There was an increase in 3-ClY mean from 0.81 ± 0.36 mmol/mol-tyrosine in stage 1 to 1.42 ± 0.41 mmol/mol-tyrosine in stage 5 (p < 0.001). The mean 3-ClY levels in patients with and without CAD were 1.25 ± 0.44 and 1.04 ± 0.42 mmol/mol-tyrosine (p = 0.023), respectively. C-statistic of ClY when added to myeloperoxidase level to predict CKD stage 5 was 0.86, compared to 0.79 for the myeloperoxidase level alone (p = 0.0097).</p><p><b>CONCLUSION: </b>The myeloperoxidase levels decrease from stages 1 to 5, whereas activity increases. In contrast, both myeloperoxidase and ClY levels rise in the presence of CAD at various stages of CKD. Measuring both plasma myeloperoxidase and 3-CLY levels provide added value to determine the burden of myeloperoxidase-mediated oxidative stress.</p>